On the Usage of Behavior Models to Detect ATM Fraud
نویسندگان
چکیده
The detection of ATM fraud is a key concern for both financial institutes and bank customers but also for ATM suppliers. This paper deals with the algorithmic learning of an ATM’s behavior model given the data stream of status information produced by standard mechatronic devices embedded in modern ATMs. During operation, the observed status information is compared with the learned reference model to detect abnormal behavior—assuming that a significant anomaly is a strong indicator of a fraud attempt. In contrast to previous work on automatic ATM fraud detection, we apply a class of models that also capture the timing behavior, thus covering a broader range of fraud and manipulation. In particular, we present an approach to learn a tailored behavior model, called Probabilistic Deterministic Timed-Transition Automaton, in order to enable the detection of time-based anomalies. We also report on preliminary results of an empirical evaluation using a real-world data set recorded on a public ATM, indicating the practical applicability of our approach. In Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014). Prague, Czech Republic, 2014.
منابع مشابه
Using Regression based Control Limits and Probability Mixture Models for Monitoring Customer Behavior
In order to achieve the maximum flexibility in adaptation to ever changing customer’s expectations in customer relationship management, appropriate measures of customer behavior should be continually monitored. To this end, control charts adjusted for buyer’s/visitor’s prior intention to repurchase or visit again are suitable means taking into account the heterogeneity across customers. In the ...
متن کاملPresenting a Model for Financial Reporting Fraud Detection using Genetic Algorithm
both academic and auditing firms have been searching for ways to detect corporate fraud. The main objective of this study was to present a model to detect financial reporting fraud by companies listed on Tehran Stock Exchange (TSE) using genetic algorithm. For this purpose, consistent with theoretical foundations, 21 variables were selected to predict fraud in financial reporting that finally, ...
متن کاملFast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies
Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...
متن کاملFraud Detection of Credit Cards Using Neuro-fuzzy Approach Based on TLBO and PSO Algorithms
The aim of this paper is to detect bank credit cards related frauds. The large amount of data and their similarity lead to a time consuming and low accurate separation of healthy and unhealthy samples behavior, by using traditional classifications. Therefore in this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) is used in order to reach a more efficient and accurate algorithm. By com...
متن کاملAutomatic ATM Fraud Detection as a Sequence-based Anomaly Detection Problem
Because of the direct access to cash and customer data, automated teller machines (ATMs) are the target of manifold attacks and fraud. To counter this problem, modern ATMs utilize specialized hardware security systems that are designed to detect particular types of attacks and manipulation. However, such systems do not provide any protection against future attacks that are unknown at design tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014